Design Equations

Homogeneous	Heterogeneous		
Ideal batch reactor	Batch catalytic reactor		
$N_{A0} \frac{dX}{dt} = -r_A V$	$N_{A0} \frac{dX}{dt} = -r_A 'W$		
or			
$t = N_{A0} \int_0^X \frac{dX}{(-r_A)V}$	$t = N_{A0} \int_0^X \frac{dX}{(-r_A')W}$		
Tubular reactor	Fixed bed reactor		
$F_{A0} \frac{dX}{dV} = -r_A$	$F_{A0} \frac{dX}{dW} = -r_A'$		
$V = F_{A0} \int_{X_{in}}^{X_{out}} \frac{dX}{-r_A}$	$W = F_{A0} \int_{X_{in}}^{X_{out}} \frac{dX}{-r_A},$		
CSTR	Fluidized bed reactor		
$V = \frac{F_{A0}(X_{out} - X_{in})}{F_{A0}(X_{out} - X_{in})}$	$W = \frac{F_{A0}(X_{out} - X_{in})}{1}$		
$-r_A$	$-r_A$ '		

Reaction rate

Homogeneous	Heterogeneous
$-r_A = \frac{1}{V} \frac{dN_A}{dt}$	$-r_A' = \frac{1}{W} \frac{dN_A}{dt}$

Professor Xijun Hu

Concentration and conversion

Batch	Flow system	
$C_A = \frac{N_A}{V}$	$C_A = \frac{F_A}{v}$	
$X_A = \frac{N_{A0} - N_A}{N_{A0}}$	$X_A = \frac{F_{A0} - F_A}{F_{A0}}$	

Stoichiometry

 $aA + bB \rightarrow cC + dD$

$-r_A$	$-\frac{-r_B}{2}$	$\underline{r_C}$	$\underline{r_D}$
a	b	- c	d

Heterogeneous reaction

<u>Catalyst properties</u> Porosity, $\varepsilon_p = \frac{\text{void (pore) volume of particle}}{\text{total volume of particle}} = V_g \rho_p$ $\rho_p = \text{density of particle}$ $V_g = \text{void volume per unit mass of particles}$

The average pore radius of catalyst is

$$\bar{r} = \frac{2V_g}{S_g}$$

S_g = surface area per unit mass of particles